sphereML
Analyzing Students' Performance Dataset in Physics Education Research (SPHERE) using Machine Learning (ML)
A simple package facilitating ML based analysis for physics education research (PER) purposes. The implemented machine learning technique is random forest optimized by item response theory (IRT) for feature selection and genetic algorithm (GA) for hyperparameter tuning. The data analyzed here has been made available in the CRAN repository through the 'spheredata' package. The SPHERE stands for Students' Performance in Physics Education Research (PER). The students are the eleventh graders learning physics at the high school curriculum. We follow the stream of multidimensional students' assessment as probed by some research based assessments in PER. The goal is to predict the students' performance at the end of the learning process. Three learning domains are measured including conceptual understanding, scientific ability, and scientific attitude. Furthermore, demographic backgrounds and potential variables predicting students' performance on physics are also demonstrated.
- Version0.1.0
- R versionR (≥ 3.5.0)
- LicenseMIT
- Needs compilation?No
- Last release02/06/2025
Team
Purwoko Haryadi Santoso
MaintainerShow author detailsHaryanto Haryanto
Show author detailsRolesContributorEdi Istiyono
Show author detailsRolesContributor
Insights
Last 30 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports15 packages