spinBayes
Semi-Parametric Gene-Environment Interaction via Bayesian Variable Selection
Many complex diseases are known to be affected by the interactions between genetic variants and environmental exposures beyond the main genetic and environmental effects. Existing Bayesian methods for gene-environment (G×E) interaction studies are challenged by the high-dimensional nature of the study and the complexity of environmental influences. We have developed a novel and powerful semi-parametric Bayesian variable selection method that can accommodate linear and nonlinear G×E interactions simultaneously (Ren et al. (2020) doi:10.1002/sim.8434). Furthermore, the proposed method can conduct structural identification by distinguishing nonlinear interactions from main effects only case within Bayesian framework. Spike-and-slab priors are incorporated on both individual and group level to shrink coefficients corresponding to irrelevant main and interaction effects to zero exactly. The Markov chain Monte Carlo algorithms of the proposed and alternative methods are efficiently implemented in C++.
- Version0.2.1
- R versionunknown
- LicenseGPL-2
- Needs compilation?Yes
- Last release03/12/2024
Documentation
Team
Jie Ren
Fei Zhou
Show author detailsRolesAuthorCen Wu
Show author detailsRolesAuthorYu Jiang
Show author detailsRolesAuthorXiaoxi Li
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports3 packages
- Suggests2 packages
- Linking To3 packages