spmoran
Fast Spatial and Spatio-Temporal Regression using Moran Eigenvectors
A collection of functions for estimating spatial and spatio-temporal regression models. Moran eigenvectors are used as spatial basis functions to efficiently approximate spatially dependent Gaussian processes (i.e., random effects eigenvector spatial filtering; see Murakami and Griffith 2015
- Version0.3.1
- R versionunknown
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?No
- Last release10/12/2024
Documentation
- VignetteSpatial regression using the spmoran package: Boston housing price data examples
- Vignettesource
- VignetteSpatio-temporally varying coefficient modeling using the spmoran package
- Vignettesource
- VignetteTransformation-based generalized spatial regression using the spmoran package: Case study examples
- Vignettesource
- In ViewsSpatial
Team
Daisuke Murakami
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports13 packages
- Suggests1 package