stepgbm
Stepwise Variable Selection for Generalized Boosted Regression Modeling
An introduction to a couple of novel predictive variable selection methods for generalised boosted regression modeling (gbm). They are based on various variable influence methods (i.e., relative variable influence (RVI) and knowledge informed RVI (i.e., KIRVI, and KIRVI2)) that adopted similar ideas as AVI, KIAVI and KIAVI2 in the 'steprf' package, and also based on predictive accuracy in stepwise algorithms. For details of the variable selection methods, please see: Li, J., Siwabessy, J., Huang, Z. and Nichol, S. (2019) doi:10.3390/geosciences9040180. Li, J., Alvarez, B., Siwabessy, J., Tran, M., Huang, Z., Przeslawski, R., Radke, L., Howard, F., Nichol, S. (2017). doi:10.13140/RG.2.2.27686.22085.
- Version1.0.1
- R versionunknown
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?No
- Li, J., Siwabessy, J., Huang, Z. and Nichol, S. (2019)
- Li, J., Alvarez, B., Siwabessy, J., Tran, M., Huang, Z., Przeslawski, R., Radke, L., Howard, F., Nichol, S. (2017).
- Last release04/04/2023
Team
Jin Li
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports2 packages
- Suggests4 packages