stochvol
Efficient Bayesian Inference for Stochastic Volatility (SV) Models
Efficient algorithms for fully Bayesian estimation of stochastic volatility (SV) models with and without asymmetry (leverage) via Markov chain Monte Carlo (MCMC) methods. Methodological details are given in Kastner and Frühwirth-Schnatter (2014) doi:10.1016/j.csda.2013.01.002 and Hosszejni and Kastner (2019) doi:10.1007/978-3-030-30611-3_8; the most common use cases are described in Hosszejni and Kastner (2021) doi:10.18637/jss.v100.i12 and Kastner (2016) doi:10.18637/jss.v069.i05 and the package examples.
- Version3.2.5
- R versionunknown
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?Yes
- stochvol citation info
- Last release10/28/2024
Documentation
Team
Darjus Hosszejni
Gregor Kastner
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports2 packages
- Suggests3 packages
- Linking To2 packages
- Reverse Imports7 packages
- Reverse Suggests3 packages