sufficientForecasting

Sufficient Forecasting using Factor Models

CRAN Package

The sufficient forecasting (SF) method is implemented by this package for a single time series forecasting using many predictors and a possibly nonlinear forecasting function. Assuming that the predictors are driven by some latent factors, the SF first conducts factor analysis and then performs sufficient dimension reduction on the estimated factors to derive predictive indices for forecasting. The package implements several dimension reduction approaches, including principal components (PC), sliced inverse regression (SIR), and directional regression (DR). Methods for dimension reduction are as described in: Fan, J., Xue, L. and Yao, J. (2017) , Luo, W., Xue, L., Yao, J. and Yu, X. (2022) and Yu, X., Yao, J. and Xue, L. (2022) .


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends1 package
  • Imports2 packages
  • Suggests2 packages