svars
Data-Driven Identification of SVAR Models
Implements data-driven identification methods for structural vector autoregressive (SVAR) models as described in Lange et al. (2021) doi:10.18637/jss.v097.i05. Based on an existing VAR model object (provided by e.g. VAR() from the 'vars' package), the structural impact matrix is obtained via data-driven identification techniques (i.e. changes in volatility (Rigobon, R. (2003) doi:10.1162/003465303772815727), patterns of GARCH (Normadin, M., Phaneuf, L. (2004) doi:10.1016/j.jmoneco.2003.11.002), independent component analysis (Matteson, D. S, Tsay, R. S., (2013) doi:10.1080/01621459.2016.1150851), least dependent innovations (Herwartz, H., Ploedt, M., (2016) doi:10.1016/j.jimonfin.2015.11.001), smooth transition in variances (Luetkepohl, H., Netsunajev, A. (2017) doi:10.1016/j.jedc.2017.09.001) or non-Gaussian maximum likelihood (Lanne, M., Meitz, M., Saikkonen, P. (2017) doi:10.1016/j.jeconom.2016.06.002)).
- Version1.3.11
- R versionunknown
- LicenseMIT
- LicenseLICENSE
- Needs compilation?Yes
- svars citation info
- Last release02/06/2023
Documentation
Team
Alexander Lange
MaintainerShow author detailsHannes Riebl
Show author detailsRolesContributorHelmut Herwartz
Show author detailsRolesAuthorBernhard Dalheimer
Show author detailsRolesAuthorSimone Maxand
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports11 packages
- Suggests2 packages
- Linking To2 packages