symbolicDA
Analysis of Symbolic Data
Symbolic data analysis methods: importing/exporting data from ASSO XML Files, distance calculation for symbolic data (Ichino-Yaguchi, de Carvalho measure), zoom star plot, 3d interval plot, multidimensional scaling for symbolic interval data, dynamic clustering based on distance matrix, HINoV method for symbolic data, Ichino's feature selection method, principal component analysis for symbolic interval data, decision trees for symbolic data based on optimal split with bagging, boosting and random forest approach (+visualization), kernel discriminant analysis for symbolic data, Kohonen's self-organizing maps for symbolic data, replication and profiling, artificial symbolic data generation. (doi:10.1007/BF02294245, doi:10.1007/BF00058655, doi:10.1007/BF01908075, doi:10.1109/21.286391, doi:10.1080/01621459.1971.10482356, doi:10.1080/03610927408827101, doi:10.1207/S15327906MBR3502_5, doi:10.1016/j.csda.2006.04.003, doi:10.1007/978-3-540-78246-9_11, doi:10.1007/978-3-540-70981-7_4)
- Version0.7-1
- R versionunknown
- LicenseGPL-2
- LicenseGPL-3
- Needs compilation?No
- Last release02/13/2023
Team
Andrzej Dudek
Marek Walesiak
Justyna Wilk
Marcin Pelka
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends2 packages
- Imports5 packages
- Reverse Depends1 package