testassay
A Hypothesis Testing Framework for Validating an Assay for Precision
A common way of validating a biological assay for is through a procedure, where m levels of an analyte are measured with n replicates at each level, and if all m estimates of the coefficient of variation (CV) are less than some prespecified level, then the assay is declared validated for precision within the range of the m analyte levels. Two limitations of this procedure are: there is no clear statistical statement of precision upon passing, and it is unclear how to modify the procedure for assays with constant standard deviation. We provide tools to convert such a procedure into a set of m hypothesis tests. This reframing motivates the m:n:q procedure, which upon completion delivers a 100q% upper confidence limit on the CV. Additionally, for a post-validation assay output of y, the method gives an “effective standard deviation interval” of log(y) plus or minus r, which is a 68% confidence interval on log(mu), where mu is the expected value of the assay output for that sample. Further, the m:n:q procedure can be straightforwardly applied to constant standard deviation assays. We illustrate these tools by applying them to a growth inhibition assay. This is an implementation of the methods described in Fay, Sachs, and Miura (2018)
- Version0.1.1
- R version≥ 3.5.0
- LicenseMIT
- Licensefile LICENSE
- Needs compilation?No
- testassay citation info
- Last release06/03/2020
Documentation
Team
Michael C Sachs
Michael C Sachs and Michael P Fay
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Suggests3 packages