timedelay

Time Delay Estimation for Stochastic Time Series of Gravitationally Lensed Quasars

CRAN Package

We provide a toolbox to estimate the time delay between the brightness time series of gravitationally lensed quasar images via Bayesian and profile likelihood approaches. The model is based on a state-space representation for irregularly observed time series data generated from a latent continuous-time Ornstein-Uhlenbeck process. Our Bayesian method adopts scientifically motivated hyper-prior distributions and a Metropolis-Hastings within Gibbs sampler, producing posterior samples of the model parameters that include the time delay. A profile likelihood of the time delay is a simple approximation to the marginal posterior distribution of the time delay. Both Bayesian and profile likelihood approaches complement each other, producing almost identical results; the Bayesian way is more principled but the profile likelihood is easier to implement. A new functionality is added in version 1.0.9 for estimating the time delay between doubly-lensed light curves observed in two bands. See also Tak et al. (2017) , Tak et al. (2018) , Hu and Tak (2020) .

  • Version1.0.11
  • R version≥ 3.5.0
  • LicenseGPL-2
  • Needs compilation?No
  • Last release05/19/2020

Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Depends1 package
  • Imports2 packages