torchopt
Advanced Optimizers for Torch
Optimizers for 'torch' deep learning library. These functions include recent results published in the literature and are not part of the optimizers offered in 'torch'. Prospective users should test these optimizers with their data, since performance depends on the specific problem being solved. The packages includes the following optimizers: (a) 'adabelief' by Zhuang et al (2020), doi:10.48550/arXiv.2010.07468; (b) 'adabound' by Luo et al.(2019), doi:10.48550/arXiv.1902.09843; (c) 'adahessian' by Yao et al.(2021) doi:10.48550/arXiv.2006.00719; (d) 'adamw' by Loshchilov & Hutter (2019), doi:10.48550/arXiv.1711.05101; (e) 'madgrad' by Defazio and Jelassi (2021), doi:10.48550/arXiv.2101.11075; (f) 'nadam' by Dozat (2019), https://openreview.net/pdf/OM0jvwB8jIp57ZJjtNEZ.pdf; (g) 'qhadam' by Ma and Yarats(2019), doi:10.48550/arXiv.1810.06801; (h) 'radam' by Liu et al. (2019), doi:10.48550/arXiv.1908.03265; (i) 'swats' by Shekar and Sochee (2018), doi:10.48550/arXiv.1712.07628; (j) 'yogi' by Zaheer et al.(2019), https://papers.nips.cc/paper/8186-adaptive-methods-for-nonconvex-optimization.
- Version0.1.4
- R versionunknown
- LicenseApache License (≥ 2)
- Needs compilation?No
- Languageen-US
- Last release06/06/2023
Documentation
Team
Gilberto Camara
Felipe Souza
Show author detailsRolesAuthorDaniel Falbel
Show author detailsRolesAuthorRolf Simoes
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports1 package
- Suggests1 package