tsforecast

Time Series Forecasting Functions

CRAN Package

Fundamental time series forecasting models such as autoregressive integrated moving average (ARIMA), exponential smoothing, and simple moving average are included. For ARIMA models, the output follows the traditional parameterisation by Box and Jenkins (1970, ISBN: 0816210942, 9780816210947). Furthermore, there are functions for detailed time series exploration and decomposition, respectively. All data and result visualisations are generated by 'ggplot2' instead of conventional R graphical output. For more details regarding the theoretical background of the models see Hyndman, R.J. and Athanasopoulos, G. (2021) https://otexts.com/fpp3/.

  • Version1.2.1
  • R version≥ 3.5.0
  • LicenseGPL-3
  • Needs compilation?No
  • Languageen-GB
  • Last releaseyesterday at 12:00 AM

Team


Insights

Last 30 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies