varbvs
Large-Scale Bayesian Variable Selection Using Variational Methods
Fast algorithms for fitting Bayesian variable selection models and computing Bayes factors, in which the outcome (or response variable) is modeled using a linear regression or a logistic regression. The algorithms are based on the variational approximations described in "Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies" (P. Carbonetto & M. Stephens, 2012, doi:10.1214/12-BA703). This software has been applied to large data sets with over a million variables and thousands of samples.
- Version2.6-10
- R versionunknown
- LicenseGPL (≥ 3)
- Needs compilation?Yes
- varbvs citation info
- Last release05/31/2023
Documentation
Team
Peter Carbonetto
Matthew Stephens
Show author detailsRolesAuthorDavid Gerard
Show author detailsRolesContributor
Insights
Last 30 days
This package has been downloaded 264 times in the last 30 days. More than a random curiosity, but not quite a blockbuster. Still, it's gaining traction! The following heatmap shows the distribution of downloads per day. Yesterday, it was downloaded 11 times.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Last 365 days
This package has been downloaded 3,352 times in the last 365 days. Consider this 'mid-tier influencer' status—if it were a TikTok, it would get a nod from nieces and nephews. The day with the most downloads was Jul 22, 2024 with 39 downloads.
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports5 packages
- Suggests6 packages
- Linking To1 package
- Reverse Imports1 package