varycoef
Modeling Spatially Varying Coefficients
Implements a maximum likelihood estimation (MLE) method for estimation and prediction of Gaussian process-based spatially varying coefficient (SVC) models (Dambon et al. (2021a) doi:10.1016/j.spasta.2020.100470). Covariance tapering (Furrer et al. (2006) doi:10.1198/106186006X132178) can be applied such that the method scales to large data. Further, it implements a joint variable selection of the fixed and random effects (Dambon et al. (2021b) doi:10.1080/13658816.2022.2097684). The package and its capabilities are described in (Dambon et al. (2021c) doi:10.48550/arXiv.2106.02364).
- Version0.3.4
- R versionunknown
- LicenseGPL-2
- Needs compilation?No
- varycoef citation info
- Last release09/17/2022
Documentation
Team
Jakob A. Dambon
Reinhard Furrer
Show author detailsRolesContributorFabio Sigrist
Show author detailsRolesContributor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Imports9 packages
- Suggests8 packages