vccp

Vine Copula Change Point Detection in Multivariate Time Series

CRAN Package

Implements the Vine Copula Change Point (VCCP) methodology for the estimation of the number and location of multiple change points in the vine copula structure of multivariate time series. The method uses vine copulas, various state-of-the-art segmentation methods to identify multiple change points, and a likelihood ratio test or the stationary bootstrap for inference. The vine copulas allow for various forms of dependence between time series including tail, symmetric and asymmetric dependence. The functions have been extensively tested on simulated multivariate time series data and fMRI data. For details on the VCCP methodology, please see Xiong & Cribben (2021).


Documentation


Team


Insights

Last 30 days

Last 365 days

The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.

Data provided by CRAN


Binaries


Dependencies

  • Imports5 packages
  • Suggests2 packages