vstdct
Nonparametric Estimation of Toeplitz Covariance Matrices
A nonparametric method to estimate Toeplitz covariance matrices from a sample of n independently and identically distributed p-dimensional vectors with mean zero. The data is preprocessed with the discrete cosine matrix and a variance stabilization transformation to obtain an approximate Gaussian regression setting for the log-spectral density function. Estimates of the spectral density function and the inverse of the covariance matrix are provided as well. Functions for simulating data and a protein data example are included. For details see (Klockmann, Krivobokova; 2023),
- Version0.2
- R version≥ 3.5.0
- LicenseGPL-2
- Needs compilation?No
- Last release07/06/2023
Team
Karolina Klockmann
Tatyana Krivobokova
Show author detailsRolesAuthor
Insights
Last 30 days
Last 365 days
The following line graph shows the downloads per day. You can hover over the graph to see the exact number of downloads per day.
Data provided by CRAN
Binaries
Dependencies
- Depends1 package
- Imports3 packages
- Suggests1 package